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PENDULUM OSCILLATION, Revision C

By Tom Irvine
Email:  tomirvine@aol.com

August 12, 1999
_______________________________________________________________________

Background

Galileo Galilei lived from 1564 to 1642.

Galileo entered the University of Pisa in 1581 to study medicine.  According to legend,
he observed a lamp swinging back and forth in the Pisa cathedral.  He noticed that the
period of time required for one oscillation was the same, regardless of the distance of
travel.  This distance is called amplitude.

Later, Galileo performed experiments to verify his observation.  He also suggested that
this principle could be applied to the regulation of clocks.

Simple Pendulum

Consider a simple pendulum as shown in Figure A-1.  A free-body diagram of the mass is
shown in Figure A-2.

Figure A-1.  Simple Pendulum
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T = tension in the connecting rod or cable.
m = mass.
g = gravitational acceleration.
L = length from pivot to center of mass.
θ = angular displacement

              Figure A-2.  Free-body Diagram

Sum the moments about the pivot point o.  Let clockwise be positive

∑ θ= &&2mLMo                                                                                           (A-1)

T
θ

mgθ

L

o



3

θ−=θ sinmgLmL2 &&                                                                                        (A-2)

Divide through by mL.

θ−=θ singL &&                                                                                               (A-3)

0singL =θ+θ&&                                                                                            (A-4)

0sin
L
g =θ+θ&&                                                                                            (A-5)

Now assume small angular displacements, such that

θ≈θsin                                                                                                    (A-6)

By substitution, a linear equation is obtained.

0
L
g =θ+θ&&                                                                                               (A-7)

Now assume that the free oscillation solution is

tcosBtsinA nn ω+ω=θ                                                                               (A-8)

where
nω   is the natural frequency,

A and B are coefficients which depend on the initial conditions.

The angular velocity is

{ }tsinBtcosA nnn ω−ωω=θ&                                                                       (A-9)

The angular acceleration is

{ }tcosBtsinA nn
2

n ω+ωω−=θ&&                                                                 (A-10)
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Substitute equations (A-8) and (A-10) into (A-7).

{ } { } 0tcosBtsinA
L
gtcosBtsinA nnnn

2
n =ω+ω+ω+ωω−                         (A-11)

0
L
g2

n =+ω−                                                                                            (A-12)

L
g2

n =ω                                                                                            (A-13)

The natural frequency is thus

L
g

n =ω                                                                                          (A-14)

Note that nω  has dimensions of radians/time.  The typical unit is radians/second.

The natural frequency can be expressed as

π
ω=
2

n
nf                                                                                          (A-15)

where

f n   has dimensions of cycles/time.  The typical unit is cycles/second, which is
also called Hertz.

The period T is related to the natural frequency by

nf
1T =                                                                                          (A-16)

The period is the time required for one complete cycle of oscillation.

Inverted Pendulum with Rotational Spring at Pivot

Consider the inverted pendulum with the rotational spring shown in Figure B-1.  The
forces and moments are shown in the diagram is in Figure B-2.
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Figure B-1.

Figure B-2.

kr is the rotational stiffness.

Sum the moments about the pivot point.  Let counter-clockwise be positive.

∑ θ= &&2LmM                                                                                                             (B-1)

θ−θ=θ krsinmgLLm 2 &&                                                                                          (B-2)
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0krsinmgLLm 2 =θ+θ−θ&&                                                                                          (B-3)

The resulting equation is nonlinear.

0
mL
kr

sin
L
g

2 =θ



+θ



−θ&&                                                                                          (B-4)

Now assume small angular displacements, such that

θ≈θsin                                                                                                    (B-5)

By substitution,

0
mL
kr

L
g

2 =θ












+



−+θ&&                                                                                          (B-6)

The natural frequency is thus













+



−=ω 2n mL

kr
L
g

                                                                                           (B-7)

The stability requirement for a small displacement is





>
L
g

mL
kr

2                                                                                            (B-8)

Lgmkr >                                                                                            (B-9)
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Simple Pendulum Subjected to Base Excitation

Consider the system in Figure C-1.  Define a coordinate system at the pendulum rest
position in Figure C-2.  Note that coordinate system origin is fixed within the enclosure

Figure C-1.
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                            Figure C-2.

Derive the equation of motion.  First, determine the position and velocity functions of the
pendulum relative to rest position.

θ−= sinLx                                                                            (C-1)

θθ−= cosLx &&                                                                           (C-2)

( )θ−= cos1Ly                                                                        (C-3)

θθ= sinLy &&                                                                              (C-4)

The kinetic energy T is

( )[ ] ( )[ ]




 θθ+θθ−= 22 sinLcosLzm

2
1

T &&&                                                             (C-5)

( ) ( ) ( )




 θθ+θθ+θθ−= 22222 sinLcosLcosLz2zm

2
1

T &&&&&                                   (C-6)
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( ) ( )




 θ+θθ−= 22 LcosLz2zm

2
1T &&&&                                                                   (C-7)

The potential energy V is

[ ]θ−= cos1LgmV                                                                         (C-8)

Lagrange's equation for a system with a nonconservative force is

N,,2,1i,Q
q
U

q
T

q
T

dt
d

i
iii

L
&

==
∂
∂+

∂
∂−




∂
∂                                           (C-9)

Apply Lagrange's equation to coordinate θ.

( ) ( )


















 θ+θθ−

θ∂
∂=







θ∂
∂ 22 LcosLz2zm

2
1

dt
dT

dt
d &&&&&&                                (C-15)

( ) ( ){ }2LcosLz
dt
d

m
T

dt
d θ+θ−=







θ∂
∂ &&&                                                      (C-16)

( ) ( ) ( ){ }2LsinLzcosLzm
T

dt
d θ+θθ+θ−=







θ∂
∂ &&&&&&&                                     (C-17)

( ) ( )




 



 θ+θθ−

θ∂
∂=

θ∂
∂ 22 LcosLz2zm

2
1T &&&&                                           (C-18)

( ) θθ=
θ∂

∂ sinLzmT &&                                                                                    (C-19)

[ ]{ }θ−
θ∂
∂=

θ∂
∂ cos1LgmU                                                                         (C-20)

{ }θ=
θ∂

∂ sinLgmU                                                                                     (C-21)
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Lagrange's equation for the θ coordinate is thus

( ) ( ) ( ){ } ( ) 0sinLgmsinLzmLsinLzcosLzm 2 =θ+θθ−θ+θθ+θ− &&&&&&&&                 (C-24)

( ) ( ){ } ( ) 0singsinzLsinzcosz =θ+θθ−θ+θθ+θ− &&&&&&&&                                         (C-25)

( ) 0singLcosz =θ+θ+θ− &&&&                                                                                (C-26)

( ) θ=θ+θ coszsingL &&&&                                                                                      (C-27)

For small angular displacement, the equation simplifies to

zgL &&&& =θ+θ                                                                                      (C-28)

Now return to equation (27).  Assume that the enclosure is subjected to a constant
acceleration

az =&&                                                                                           (C-29)

By substitution,

( ) θ=θ+θ cosasingL&&                                                                           (C-30)

A new equilibrium condition is obtained for a constant base excitation.  The steady-state
condition for a constant base excitation is

0=θ&&                                                                                                     (C-31)

oθ=θ                                                                                                   (C-32)

By substitution,

oo cosasing θ=θ                                                                                    (C-33)

atang o =θ                                                                                            (C-34)

Equation (C-34) is can be used to calibrate a simple pendulum accelerometer.  Such
accelerometers can be used to measure the steady-state acceleration of an automobile or a
roller coaster.


