NATURAL FREQUENCIES OF BEAMS SUBJECTED TO A UNIFORM AXIAL LOAD Revision A

By Tom Irvine

Email: tomirvine@aol.com

August 7, 2003

Introduction

The natural frequency of a beam is increased by an axial tension load and decreased by an axial compressive load.

The governing differential equation for the transverse displacement y(x, t) is

$$\frac{\partial^{2}}{\partial x^{2}} \left\{ EI(x) \frac{d^{2}}{\partial x^{2}} y(x,t) \right\} + P_{o} \frac{\partial}{\partial x} \left[\left(1 - \frac{x}{L} \right) \frac{\partial y}{\partial x} \right] + m \frac{\partial^{2} y(x,t)}{\partial t^{2}} = 0$$
(1)

where

E is the modulus of elasticity

I is the area moment of inertia

m is the mass per length

L is the length

P₀ is the axial compressive load

Equation (1) is taken from Reference 1.

Natural Frequency Formulas

Natural frequency formulas are given in References 2 through 4.

The exact natural frequency f_n for a pinned-pinned or sliding-sliding beam is

$$f_{n} = \frac{n^{2} \pi^{2}}{2\pi L^{2}} \sqrt{1 + \frac{PL^{2}}{EI n^{2} \pi^{2}}} \sqrt{\frac{EI}{m}} , \quad n = 1, 2, 3, ...$$
 (2)

Note that P is positive for a tension load. P is negative for a compression load.

The exact natural frequency for a sliding-pinned beam is

$$f_{n} = \frac{n^{2} \pi^{2}}{8\pi L^{2}} \sqrt{1 + \frac{4PL^{2}}{EI n^{2} \pi^{2}}} \sqrt{\frac{EI}{m}} , \quad n = 1, 3, 5, ...$$
 (3)

The approximate natural frequency formula for beams with other boundary conditions is

$$\frac{f_{n} \mid_{P \neq 0}}{f_{n} \mid_{P=0}} = \sqrt{1 + \frac{P}{\mid P_{cr} \mid} \frac{\lambda_{1}^{2}}{\lambda_{n}^{2}}}, \quad n = 1, 2, 3, \dots$$
 (4)

 P_{CT} is the buckling load, as given in Appendix A for common boundary conditions.

 λ_n is the non-dimensional frequency in the absence of an axial load. Values for common boundary conditions are given in Appendix B.

Note that the fundamental frequency approaches zero as P approaches the negative critical load. Again, the negative sign corresponds to compression.

An example is shown in Appendix C.

References

- 1. L. Meirovitch, Analytical Methods in Vibration, Macmillan, New York, 1967.
- 2. R. Blevins, Formulas for Natural Frequency and Mode Shape, Krieger, Malabar, Florida, 1979.
- 3. Shaker, F.J., "Effect of Axial Load on Mode Shapes and Frequencies of Beams," Lewis Research Center Report NASA-TN-8109, December 1975.
- 4. C. Harris, editor; Shock and Vibration Handbook, 4th edition; W. Stokey, "Vibration of Systems Having Distributed Mass and Elasticity," McGraw-Hill, New York, 1988.
- 5. Timoshenko and Gere, Theory of Elastic Stability, International Student Edition, 2nd Edition, McGraw-Hill, New Delhi, 1963.
- 6. Alexander Chajes, Principles of Structural Stability Theory, Prentice-Hall, New Jersey, 1974.
- 7. T. Irvine, Application of the Newton-Raphson Method to Vibration Problems, Revision B, Vibrationdata Publications, 1999.
- 8. T. Irvine, Bending Frequencies of Beams, Rods, and Pipes, Revision H; Vibrationdata Publications, 2002.

APPENDIX A

Critical Buckling Loads for Beams with a Constant Axial Load

Boundary Condition	P _{cr}
Fixed-Fixed	$\frac{4\pi^2 \text{ EI}}{\text{L}^2}$
Fixed-Pinned	$\frac{20.19\pi^2 \text{ EI}}{\text{L}^2}$
Fixed-Free	$\frac{\pi^2 \text{ EI}}{4L^2}$
Pinned-Pinned or Free-Free	$\frac{\pi^2 \text{ EI}}{\text{L}^2}$

The critical loads are taken from References 5 and 6.

APPENDIX B

Non-dimensional Frequency Parameters

The values in the following tables are taken from Reference 7.

Table B-1. Fixed-Free			
n	λ_n		
1	1.875104		
2	4.694091		

Table B-2. Free-Free or Fixed-Fixed			
n	λ_{n}		
1	4.73004		
2	7.85320		

Table B-3. Free-Pinned or Fixed-Pinned				
n	λ_{n}			
1	3.926602			
2	7.068583			

APPENDIX C

Example

Consider a fixed-free beam made from aluminum. The beam is 24 inches long. It has a circular cross-section with a diameter of 1 inch. It is subjected to an axial load of +833 lbf, where the positive sign indicates tension. Calculate the fundamental frequency for the loaded beam.

 $E = 9900000. lbf/in^2$

 $I = 0.0490874 \text{ in}^4$

m = 0.098 lbm/in

L = 24 inch

P = 833 lbf

The fundamental frequency for the beam with no axial load is

$$f_1 = \frac{1}{2\pi} \left[\frac{3.5156}{L^2} \right] \sqrt{\frac{EI}{m}}$$
 (C-1)

$$f_1 = 47.8 \text{ Hz} \quad (\text{for } P = 0)$$
 (C-2)

Equation (C-1) is taken from Reference 8.

The critical buckling load is

$$Pcr = \frac{\pi^2 EI}{4L^2}$$
 (C-3)

$$Pcr = 2082 lbf (C-4)$$

$$\frac{f_n \mid_{P \neq 0}}{f_n \mid_{P=0}} = \sqrt{1 + \frac{P}{\mid P_{cr} \mid} \frac{\lambda_1^2}{\lambda_n^2}}, \quad n = 1, 2, 3, \dots$$
 (C-5)

The fundamental frequency requires n = 1.

$$\frac{f_1|_{P \neq 0}}{f_1|_{P=0}} = \sqrt{1 + \frac{P}{|P_{cr}|}}$$
 (C-6)

$$\frac{f_1|_{P\neq 0}}{f_1|_{P=0}} = \sqrt{1 + \frac{833}{|2082|}}$$
 (C-7)

$$\frac{f_1 \Big|_{P \neq 0}}{f_1 \Big|_{P=0}} = 1.18 \tag{C-8}$$

$$f_1 \Big|_{P \neq 0} = 1.18 (47.8 \text{ Hz})$$
 (C-9)

$$f_1 \Big|_{P \neq 0} = 56.6 \text{ Hz}$$
 (C-10)

The result was verified using a finite element model. The software was NE/Nastran. The finite element frequency was 55.87 Hz, using a model with 24 elements. The mode shape is shown in Figure C-1. The input file is shown in Appendix D.

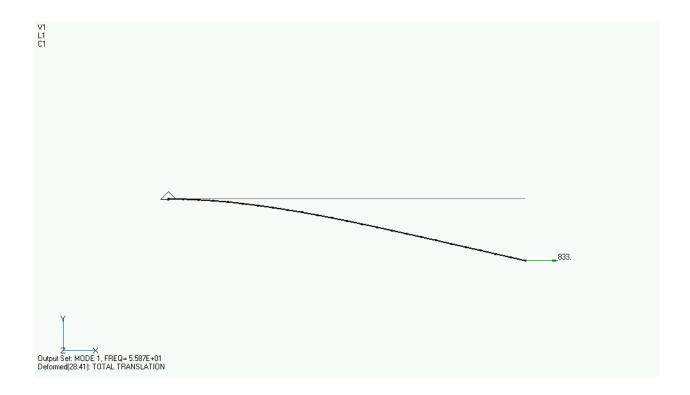


Figure C-1. Fundamental Mode Shape, Cantilever Beam with Axial Load

APPENDIX D

```
ID C:\NENASTRAN82\Modeler\ca,NE/Na
SOL LINEAR PRESTRESS MODAL
TIME 10000
CEND
 TITLE = Normal Modes
 ECHO = NONE
 DISPLACEMENT(PRINT) = ALL
SUBCASE 1
 LABEL = PRESTRESS TENSILE LOAD (AXIAL)
 SPC = 1
 LOAD = 1
SUBCASE 2
 LABEL = MODAL
 SPC = 1
 METHOD = 1
BEGIN BULK
Written by : NE/Nastran for Windows
   Version : 8.20
$
   Translator : NE/Nastran
$
   From Model : C:\NENASTRAN82\Modeler\cantilever_beam3.MOD
         : Mon Jul 21 12:05:50 2003
PARAM, POST, -1
PARAM, OGEOM, NO
PARAM, AUTOSPC, YES
PARAM, GRDPNT, 0
                               10
EIGRL
MASS
CORD2C
            1 0 0. 0.
                                  0. 0.
                                                   0.
1.+NE/NAC1
+NE/NAC1
                  0.
           1.
                         1.
CORD2S
           2
                  0
                         0.
                                     0.
                                             0.
                               0.
                                                   0.
1.+NE/NAC2
+NE/NAC2
           1.
                  0.
                         1.
$ NE/Nastran for Windows Load Set 1 : set 1
           1 25 0
                              1.
                                   833.
                                             0.
                                                   0.
$ NE/Nastran for Windows Constraint Set 1 : set 1
SPC
           1 1 123456
                               0.
$ NE/Nastran for Windows Property 1 : Bar
                  1 0.785070.0490870.0490870.098092
PBAR
           1
+PR
     1
     1
+PR
           0. -0.5
                        0.5
                            0.
                                      0. 0.5
                                                 -0.5
      1
0.+PA
+PA
      1 0.88652 0.88653
                       0.
$ NE/Nastran for Windows Material 1 : 6061-T651 Al Plate .25-2.
MAT1
            19900000.
                              0.332.539E-41.265E-5
+MT
     1
+MT 1 35000. 35000. 27000.
```

MAT4	12.060E	-3	81.1442.	539E-4			
GRID	1	0	0.	0.	0.	0	
GRID	2	0	1.	0.	0.	0	
GRID	3	0	2.	0.	0.	0	
GRID	4	0	3.	0.	0.	0	
GRID	5	Ö	4.	0.	0.	Ö	
GRID	6	Ö	5.	0.	0.	Ö	
GRID	7	0	6.	0.	0.	Ö	
GRID	8	0	7.	0.	0.	Ö	
GRID	9	0	8.	0.	0.	Ö	
GRID	10	0	9.	0.	0.	0	
GRID	11	0	10.	0.	0.	0	
GRID	12	0	11.	0.	0.	0	
GRID	13	0	12.	0.	0.	0	
GRID	14	0	13.	0.	0.	0	
GRID	15	0	14.	0.	0.	0	
GRID	16	0	15.	0.	0.	0	
GRID	17		16.	0.	0.	_	
	18	0 0	17.	0.	0.	0 0	
GRID							
GRID	19	0	18.	0.	0.	0	
GRID	20	0	19.	0.	0.	0	
GRID	21	0	20.	0.	0.	0	
GRID	22	0	21.	0.	0.	0	
GRID	23	0	22.	0.	0.	0	
GRID	24	0	23.	0.	0.	0	
GRID	25	0	24.	0.	0.	0	0
CBAR	1	1	1	2	0.	1.	0.
CBAR	2	1	2	3	0.	1.	0.
CBAR	3	1	3	4	0.	1.	0.
CBAR	4	1	4	5	0.	1.	0.
CBAR	5	1	5	6	0.	1.	0.
CBAR	6	1	6	7	0.	1.	0.
CBAR	7	1	7	8	0.	1.	0.
CBAR	8	1	8	9	0.	1.	0.
CBAR	9	1	9	10	0.	1.	0.
CBAR	10	1	10	11	0.	1.	0.
CBAR	11	1	11	12	0.	1.	0.
CBAR	12	1	12	13	0.	1.	0.
CBAR	13	1	13	14	0.	1.	0.
CBAR	14	1	14	15	0.	1.	0.
CBAR	15	1	15	16	0.	1.	0.
CBAR	16	1	16	17	0.	1.	0.
CBAR	17	1	17	18	0.	1.	0.
CBAR	18	1	18	19	0.	1.	0.
CBAR	19	1	19	20	0.	1.	0.
CBAR	20	1	20	21	0.	1.	0.
CBAR	21	1	21	22	0.	1.	0.
CBAR	22	1	22	23	0.	1.	0.
CBAR	23	1	23	24	0.	1.	0.
CBAR	24	1	24	25	0.	1.	0.
ENDDATA							