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Introduction

The purpose of this report is to discuss frequency response functions.  These functions
are used in vibration analysis and modal testing.  The purpose of modal testing is to
identify the natural frequencies, damping ratios, and mode shapes of a structure.

Natural Frequencies

Bridges, aircraft wings, machine tools, and all other physical structures have natural
frequencies.  A natural frequency is the frequency at which the structure would oscillate
if it were disturbed from its rest position and then allowed to vibrate freely.  All
structures have at least one natural frequency.  Nearly every structure has multiple natural
frequencies.

Resonance occurs when the applied force or base excitation frequency coincides with a
structural natural frequency. During resonant vibration, the response displacement may
increase until the structure experiences buckling, yielding, fatigue, or some other failure
mechanism.

The failure of the Cypress Viaduct in the 1989 Loma Prieta Earthquake is example of
failure due to resonant excitation.  Resonant vibration caused 50 of the 124 spans of the
Viaduct to collapse. The reinforced concrete frames of those spans were mounted on
weak soil. As a result, the natural frequency of those spans coincided with the frequency
of the earthquake ground motion. The Viaduct structure thus amplified the ground
motion. The spans suffered increasing vertical motion.  Cracks formed in the support
frames.  Finally, the upper roadway collapsed, slamming down on the lower road.

Dynamic Analysis

Engineers performing dynamic analysis must

1. Determine the natural frequencies of the structure.
2. Characterize potential excitation functions.
3. Calculate the response of the structure to the maximum expected

excitation.
4. Determine whether the expected response violates any failure criteria.

This report is concerned with the first step.
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The natural frequencies can be calculated via analytical methods during the design stage.
The frequencies may also be measured after the structure, or a prototype, is built.

Each natural frequency has a corresponding damping ratio.  Damping values are
empirical values that must be obtained by measurement.

Frequency Response Function Overview

There are many tools available for performing vibration analysis and testing.  The
frequency response function is a particular tool.

A frequency response function (FRF) is a transfer function, expressed in the frequency-
domain.

Frequency response functions are complex functions, with real and imaginary
components.  They may also be represented in terms of magnitude and phase.

A frequency response function can be formed from either measured data or analytical
functions.

A frequency response function expresses the structural response to an applied force as a
function of frequency.  The response may be given in terms of displacement, velocity, or
acceleration.  Furthermore, the response parameter may appear in the numerator or
denominator of the transfer function.

Frequency Response Function Model

Consider a linear system as represented by the diagram in Figure 1.

Figure 1.

( )ωF  is the input force as a function of the angular frequency ω .   ( )ωH  is the transfer
function. ( )ωX  is the displacement response function.  Each function is a complex
function, which may also be represented in terms of magnitude and phase.  Each function
is thus a spectral function.  There are numerous types of spectral functions.  For
simplicity, consider each to be a Fourier transform.

( )ωH

Transfer function

( )ωF

Input Force Displacement Response

( )ωX



3

The relationship in Figure 1 can be represented by the following equations

( ) ( ) ( )ω⋅ω=ω FHX                                                                            (1)

( ) ( )
( )ω
ω=ω

F
XH                                                                                 (2)

Similar transfer functions can be developed for the velocity and acceleration responses.

Nomenclature

There are six basic transfer functions as shown in Tables 1 and 2.

Table 1.  Frequency Response Function Names
Dimension Displacement / Force Velocity / Force Acceleration / Force

Name Admittance,
Compliance,
Receptance

Mobility Accelerance,
Inertance

Table 2.  Frequency Response Function Names
Dimension  Force / Displacement Force / Velocity Force / Acceleration

Name Dynamic Stiffness Mechanical Impedance Apparent Mass,
Dynamic Mass

Note that all of the functions in Tables 1 and 2 are related by algebraic equations.  Any of
the function can be calculated from any other.

Analytical Frequency Response Function

Consider a single-degree-of-freedom system subjected to a force excitation as shown in
Figure 2.  The free-body diagram is shown in Figure 3.
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Figure 2.  Single-degree-of-freedom System

The variables are

m = mass,
c = viscous damping coefficient,
k = stiffness,
x = absolute displacement of the mass,
F = applied force.

Figure 3.  Free-body Diagram

Summation of forces in the vertical direction

F mx=∑ &&                                                                                      (3)

Fxkxcxm +−−= &&&                                                                                            (4)

Fxkxcxm =++ &&&                                                                                            (5)

m/Fx)m/k(x)m/c(x =++ &&&                                                                          (6)
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By convention,

n2)m/c( ξω=                                                                                               (7)

2
n)m/k( ω=                                                                                                (8)

where nω  is the natural frequency in (radians/sec), and ξ  is the damping ratio.

Substituting the convention terms into equation (6),

k/F2
nx2

nxn2x ω=ω+ξω+ &&&                                                                      (9)

The Fourier transform of each side of equation (9) may be taken to derive the steady-state
transfer function for the absolute response displacement, as shown in Reference 1.

After many steps, the resulting transfer function is
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This transfer function, which represents displacement over force, is sometimes called the
receptance function, as shown in Table 1.

The transfer function can be represented in terms of magnitude and phase angle φas
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The mobility function is
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The accelerance function is
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Example

Consider a single-degree-of-freedom system with parameters shown in Table 3.

Table 3.  Parameters

Variable Symbol Value

Mass m 1 kg

Stiffness k 3.948e+05 N/m

Natural Frequency nω 100 Hz  ( 628.32 rad/sec )

Damping Ratio ξ 0.05

The systems frequency response functions are plotted according to Table 4.  The
functions are plotted in terms of amplitude and phase.

Table 4. Plot Format

Function Description Figure

Admittance Displacement / Force 3

Mobility Velocity / Force 4

Accelerance Acceleration / Force 5

Dynamic Stiffness Force / Displacement 6

Mechanical Impedance Force / Velocity 7

Apparent Mass Force / Acceleration 8
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